ENGINEERING PHYSICS INTIXQUITETINEID OUANIUM MECHANIES

Feedback/corrections: vibha@pesupes.edu

References: VR Sunitha's Lectures Vishrum V's notes

Vibha Mashi

Electric & Magnetic fields

I

vector fields

- wind , fluids
- Gravitational field
- Electric le Magnetic field
- Represented by vectors in space

vector operator (del)

del operator $-\nabla$

$$
\cdot \quad \nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}
$$

- vector operator with no magnitude
- partial differential operator
- operator acts on vector field as either cross or dot product

$$
\frac{1}{2} \int_{0}^{\infty} f(x, y) = \int_{0}^{\infty} x^2 + \int_{0}^{\infty} y^2
$$

- When \bar{p} operates on scalar field: gradient
- When ∂operates on scalar field gradient
▽φ where φ(2,y,z) is a scalar field is the gradient
- Gradient gives direction along which steepest change of field occurs
- Gradient of a scalar is a vector

Divergence $C\nabla\cdot\vec{F}$)

-

- Divergence means flow
- \cdot If \overline{p} : \overline{F} = $+ve$: flow is outward at a
	- If $\vec{v} \cdot \vec{F}$ = -ve : flow is inward given
	- $\begin{array}{c} \mathbf{1} \ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \end{array}$ $P^2F = rve$: flow is outward
 $P^2F' = -ve$: flow is inward
 $P^2F' = 0$: inward flow=outward flow point

Divergence of a vector field gives a scalar function.

$U(f \mid (V \times \overline{F})$

-
- · rotation of vector fields
· whirlpools, torrado, ocean current, centrifuges
· can be dockwise of antidockwise
-

J = writent density

$$
\overline{v_0} \cdot 3 = 0 \quad ; \text{ no flow}
$$

There is curl

 $\vec{\nabla}$ xJ \neq 0

- Laplacian Operator $(\nabla^2 = \nabla \cdot \nabla)$

$$
\nabla = \frac{\partial}{\partial x} \hat{v} + \frac{\partial}{\partial y} \hat{v} + \frac{\partial}{\partial z} \hat{k}
$$

 $\nabla^2 = \nabla \cdot \nabla$

$$
=(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k})(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k})
$$

$$
\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
$$

MAXWELL'S EQUATIONS

- $a) \int \vec{B} \cdot d\vec{s} = 0$ Uarger regions
of space)
- 3) $\int_{I} \vec{\epsilon} \cdot d\vec{l}$ -dp] Faraday's Law
- 4) [B'-JI = M. (I. + I)] modified Ampéré's

DIFFERENTIAL FORM

3) $\vec{\nabla}\times\vec{E} = -\frac{\partial B}{\partial t} \int \vec{r} \text{araday's Law}$

4) $\vec{\nabla}\times\vec{B}^2 = \mu_0(\vec{S} + \vec{\epsilon}_0, \frac{\partial \vec{\epsilon}}{\partial t})$ modified

$3) \nabla \times E = -\frac{\partial B}{\partial t}$

6

- . circulating E can give rise to time-varying B
· time-varying B gives rise to circulating E
-

4) $\nabla \times B = \mu_0 J + \mu_0 \mathcal{E}_0 \frac{\partial E}{\partial t}$

Ampere's Law

 $\nabla \times H = J$

Scalar triple product IDENTITIES

- 1. $\nabla \cdot (\nabla \times A) = 0$ dector triple product
- 2. $\nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) \nabla^2 A$ Clagrangels formula)

 $\vec{A} \times (\vec{B} \times \vec{C}) = (A \cdot C)B - (A \cdot B)C$

$V\times H = J$

∇ $(\nabla \times H) = \nabla \cdot J$

$$
\nabla \cdot (\nabla \times \mathbf{H}) = 0
$$

With capacitor

$$
\nabla\cdot\mathbf{J}\neq\mathbf{O}
$$

E is varying

$$
\nabla \cdot (\nabla \times H) = 0
$$

 $\frac{1}{2}$

Maxwell's Correction

$$
2\times H = 2 + 2^E
$$

 $D = \mathcal{E}_0$ \mathcal{E}

$$
\frac{1}{2} = \frac{1}{2} \frac{1}{2} = 1
$$

 $B = \mu_0 H$ = $H = \frac{B}{\mu_0}$

$$
\nabla \times \frac{\beta}{\mu_0} = 5 + \frac{5}{26} \frac{\partial E}{\partial k}
$$

$$
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \mathbf{S}_0 \frac{\partial \mathbf{E}}{\partial t}
$$

MAXWELL'S EQUATIONS " FREE SPACE

Using Maxwell's Equations in free Space, Derive Wave Equation
in terms of Electric Field and Magnetic Field.

 \mathbf{g}

ELECTRIC FIELD

 $\vec{\nabla}\times(\vec{\nabla}\times\vec{\varepsilon})=\vec{\nabla}(\vec{\nabla}\cdot\vec{\varepsilon})-\vec{\nabla}^2\vec{\varepsilon}$ \vec{v} x $\left(\frac{\partial \vec{B}}{\partial t}\right) = 0 - \vec{v}^2 \vec{\epsilon}$ $\vec{\nabla}\times(\underbrace{\partial\vec{B}}_{\lambda k}) = \nabla^2\vec{E}$ $\frac{\partial}{\partial t}(\vec{\nabla}\times\vec{B}) = \nabla^2 \vec{E}$ $\frac{\partial}{\partial t} (M_0 \Sigma_0 \frac{\partial \vec{\epsilon}}{\partial t}) = \nabla^2 \vec{\epsilon}$

 $M_{0}\xi_{0}$ $\frac{\partial^{2} \vec{\epsilon}}{\partial t^{2}}$ = $\nabla^{2} \vec{\epsilon}$ - (1) \boldsymbol{q}

General wave equation

 $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$ \longrightarrow (2)

where v is the velocity of propagation of the wave

expanding C1), we get

 $\frac{\partial^2 \vec{E}'}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$ $-$ (3)

comparing @ and ③, we get wave equation in terms of E $R^2\overrightarrow{c^2} = 1$ $\frac{\partial^2 \overrightarrow{c^2}}{\partial t^2}$ where $c^2 = 1$

E propagate through free space at the speed of light.

MAGNETIC FIELD

 $\vec{\nabla} \times (\vec{\nabla} \times \vec{B}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{B}) - \vec{\nabla} \cdot \vec{B}$ $\vec{\nabla}$ (μ ∞ $\begin{pmatrix} 2 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} = 0$ - $\nabla^2 \vec{\nabla}$ M_0 Eo $\frac{\partial}{\partial t}(\vec{\nabla}\times\vec{\epsilon})$ = $-\nabla^2\vec{\epsilon}$ $-\mu_0 \xi_0 \frac{\partial^2 \vec{b}}{\partial t^2} = -\vec{v}^2 \vec{b}$

 10 $= p^2 \vec{B}$ μ_0 $\frac{\partial^2 E}{\partial k^2}$ wave equation in terms of B $D^2\vec{B} = \frac{1}{C^2} \frac{\partial^2 \vec{B}}{\partial t^2}$ where $c^2 = 1$ M_0 ϵ_0

magnetic fields propagate mroyan free space at the speed of light.

Varying ? and B represent sight waves.

Light waves are electromagnetic wowes.

Show that E and B are perpendicular to each other and

ELECTRIC WAVE

Let us consider only the x -component of $\vec{\epsilon}$
 \therefore ϵ_0 = 0, ϵ_2 = 0 $\frac{1}{2}$ (Polarised wave) $\rho * \varepsilon = \frac{-\partial B}{\partial t}$ $c \quad \ \ \delta \quad \ \ \, \iota$ $\nabla \times \epsilon$ = $\frac{\partial}{\partial x}$ $\frac{\partial}{\partial y}$ $\frac{\partial}{\partial z}$ $\overline{\mathbf{0}}$ Ex is independent $\nabla x \in - \int \left(\frac{\partial E_1}{\partial z} \right) - \hat{h} \left(\frac{\partial E_1}{\partial u} \right)$ $of y$ $\sqrt{xe} = \int \frac{\partial E_x}{\partial z}$ $\nabla \times \epsilon = 5 \frac{\partial}{\partial z} (\epsilon_{ox} \omega s(\omega t - kz))$ = \int (-k)(-) $\varepsilon_{0}x$ sin (wt -kz) $Dxe = \int e_{0x} k \sin(\omega t - kz)$ $\frac{-\partial B}{\partial k}$ = $\int e_{ox} k \, km (\omega t + 2)$

Integrate wrt t

 $-B = \int E_{0x} k \left(\frac{-\cos(\omega t + 2)}{\omega} \right)$

 $B = \int \frac{k}{\omega^2} \epsilon_{02} \omega \sin(\omega t - kz)$

. Magnetic Field is along y-direction

E and B are always couped to each other and

Properties of EM waves

- 1. ^E L^B
- $2.$ E & B \perp direction of propagation
- $s. \in \mathcal{G}$ D \longrightarrow speed of light
- 4- EM waves carry energy
- ENERGY DENSITY
- Energy carried by electric field

unugy density

\n
$$
-\frac{1}{a}\mathcal{E}_b\mathcal{E}^t
$$

Energy carried by magnetic field

energy density =
$$
1 - B^2
$$

of \vec{B}

total energy density

$$
U_T = \frac{1}{a} 50 \frac{c^2}{x} + \frac{1}{2} \frac{B^2}{M_0}
$$

$$
By = \frac{Bx}{C}
$$

 $V_1 = \frac{1}{2} S_0 E_0^2 + \frac{E_0^2}{2} C_0^2 \mu_0$

 $\frac{1}{c^{2}}$ = μ o ϵ

 $V_1 = \frac{1}{2} \xi_0 \xi_x^2 + \frac{1}{2} \xi_0 \xi_x^2$

 $U_7 = 20 E_8^2$ or $U_7 = \frac{B_8^2}{\mu_0}$

POYNTING VECTOR

Amount of energy flowing through EM waves per

14

Consider a polaissed EM voore propagating in space

Over a time dt, the wave moves from z to z+dz

We take the direction of 5 in the direction of

\cdot we take $\vec{S} \parallel \vec{E} \times \vec{B}$

$B = \frac{P \times B}{M_{0}}$

 $S = \frac{\varepsilon_{x} B y}{\mu_{0}}$ $M_0 C = \frac{1}{20 C}$ $=\frac{\varepsilon_{x} \varepsilon_{x}}{\mu_{0} c}$

 16

= E_{λ}^{2} $\Sigma_{0}c$

 $S = C E_0 E_0^2$

 $\epsilon_x = \epsilon_{ox}$ cos (wt-kz)

$257: C20 CE²$

= $c56$ E_{ox}^2 < $cos^2 (wt - kz)$

 $\left(\cos^{2}(\omega t-kz)7=\frac{1}{T}\int\limits_{0}^{T}\cos^{2}(\omega t-kz)dt=\frac{1}{2}$

$457 = 10566r^2$

- · S & E_{ox}², where ϵ_{ox} is the amplitude
- . S talks about the intensity of radiation (I)
- . EM waves only take about intensity, not frequency

POLARISATION

- . Note: E of matter interacts only with \vec{e} of \vec{e} wave,

not \vec{B}

. Only in some cases (MRI scans), it interacts with \vec{B}
-

LINEAR POLARISATION / PLANE POLARISATION

$$
\begin{array}{ll}\n\mathbf{F} & \text{only along } \mathbf{a} - \text{direction} \\
\mathbf{E}_\mathbf{k} &= \mathbf{E}_{\mathbf{O}\mathbf{k}} \sin \left(\omega \mathbf{t} - \mathbf{u} \cdot \mathbf{z}\right) \\
\mathbf{E}_\mathbf{y} & \rightarrow \mathbf{O}\n\end{array}
$$

URLVLAR POLARISATION

· two mutally perpendicular waves of equal amplitude
with a phase difference of tyz

$$
E_{x} = E_{o} \sin(\omega t - kz) \hat{1}
$$

$$
e_y = E_0 \sin \left(\omega t - kz + \underline{\mu} \right) \widehat{\jmath}
$$

ELLIPTICAL POLARISATION

· two mutually perpenducular vaves of different amplitude
with a phase difference of typ (right elliptical)

DUAL NATURE of RADIATION

Radiation as a Wave Radiation as Particles

-
-
- 3 polarisation
- 4. reflection/ refraction

- 1. interference i. photoelectric effect
- 2. diffraction a blackbody radiation
	- polarisation 3. atomic spectra
		-

Photoelectric Effect

• Observation , experiment - Hertz which , experience
 $\begin{array}{r} \n\hline\n\downarrow^2 \quad \text{end} \quad \begin{array}{r}\n\hline\n\downarrow^2 \$

EM wave

 Δ

- Light incident on metals creates photoelectrons
- Instantaneous emission of photoelectrons

I

- Wave theory could not explain this phenomenon
- Discrete bundles of energy from EM wave
- Photon completely transfers energy to e-
• Particle-particle interaction
-

$$
h\nu = h\nu_o + \frac{1}{2}mv^2
$$

• Frequency $\lt \;$ energy , intensity $\lt \;$ photocurrent

Blackbody Radiation

- blackbodies can be used for solar cells
-
- experimental graph

Blackbody

- body that completely absorbs all incident radiation
• completely emits all Jabsorbed energy
- · compressive comes an *cabilities*
-
- carbon black Csooh , sun

Observations

- 1. As T 1, max intensity shifts towards higher frequency
	- $T \propto \frac{1}{\lambda_{\text{max}}}$, $T \propto f_{\text{max}}$ Wein's displacement Law
- 2. Energy radiated is proportional to T4
	- Ex T⁴ Stefan's Law

Spectral Density / Spectral Radiance

- the amount of energy contained in the cavity per
unit volume in the interval ν + d ν or λ + day
at a constant temperature
	- U, du = no of oscillators x average energy

= <u>no. of standing waves</u> x average energy

Derivation of Rayleigh-Jeans Expression for Energy Density

they imagined EM waves in ^a cubic volume due to oscillating dipoles that make up the walls of the cavity

stabilise to form standing waves

Ina 3-D cubic cavity , wave can form standing wave in a direction only if each of its components independently forms standing waves in x-y-z directions

we get components of kin all three directions

Now, K= $\overline{\lambda}$ 㱺 we get xcscalar) along ³ axes For standing waves along 3 axes,

$$
\lambda_{\mathbf{z}} = \frac{\partial L}{\partial \mathbf{z}} \qquad \lambda_{\mathbf{y}} = \frac{\partial L}{\partial \mathbf{z}} \qquad \lambda_{\mathbf{z}} = \frac{\partial L}{\partial \mathbf{z}}
$$

 $\overline{24}$

Taking
$$
\alpha
$$
, β and γ as directions
\n $\cos \alpha = \frac{\lambda}{\lambda z}$, $\cos \beta = \frac{\lambda}{\lambda y}$, $\cos \gamma = \frac{\lambda}{\lambda z}$

We know cair ratios)

Sewond begunny.

Three possible modes μ_1 121, 211)

$$
\nu_{112} - \nu_{121} = \nu_{211} = \frac{c}{21} \sqrt{6}
$$

modes are all the possible standing waves.

The frequencies v_{112} , v_{121} , v_{211} are equal but are
different modes, as they are physically different
caifferent directions of propagation)

Phase space

we glot the modes on a phase space.

We imagine an octet of a sphere to get the
number of possible modes

Each possible made can be represented as a unit cube

 26

Volume of octet = no of unit whes capprox as octet is huge)

For each cube there is only I point which represents 1 possible mode

 \therefore volume = no of unit whos = no. of points = no of modes

volume = $no.$ of modes

According to the equation of a sphere $x^2+y^2+z^2=R^2$

Here
$$
n_x^2 \nmid n_y^2 \nmid n_z^2 = R^2
$$

$$
v = \frac{C}{2!} \sqrt{n_x^2 + n_y^2 + n_z^2} = \frac{C R}{2!}
$$

Let sphere be of radius R, all points on the surface have Freyning 2

No. of modes within frequency $v =$ volume of octet

$$
\frac{21}{8} \times \frac{41}{3} R^3
$$

Slightly bigger octet of radius R+dR with modes within

 \mathfrak{A}

No. of modes voitnin frequency \mathcal{D} +d \mathcal{D}

$$
\frac{1}{8} \times \frac{4}{3} \pi (R + dR)^3
$$

No of modes with frequency lying between v and v+dv

$$
=\frac{1}{8} \times \frac{4}{3} \times \left[(R \cdot dR)^3 - R^3 \right]
$$

= $\frac{11}{6} \left[R^5 + 3R^2 dR + 3RdR^2 + 64R^3 - R^2 \right]$

de is very small lnegeding higher order terms)

$$
=
$$
 1 (3R² dR) = 1 R² dR

NOW, $v = \frac{CR}{AL} \Rightarrow R = \frac{ALV}{C} \Rightarrow dR = \frac{AL}{C} dV$

no of modes
from v rov+dv = I (41²v²) (IL dv)

$$
N(\nu) dv = 4\pi L^3 \nu^2 dv
$$

Now, Rayleigh - Jean assumed average energy per mode is LT
at temperature T (equipartition theorem)

28

Energy of nodes lying between ν and ν -d ν

$$
c: \mathcal{V} \lambda \Rightarrow c^2 = \mathcal{V}^2 \lambda^2
$$

$$
v_2 \leftarrow v_2 \, dv_2 \leftarrow d\lambda
$$

$E(\lambda) d\lambda = \frac{4\pi e^2}{\lambda^2 e^2} \left(\frac{e}{\lambda^2}\right)$ ut d λ

$$
\mathcal{E}(\lambda) d\lambda = -4\pi k \text{ or } d\lambda
$$

energy possessed by oscillators

This energy is only considering 1 direction of oscillations of

For direction of propagation 2, there are a orthogonal

Now, no. of modes between v and v+dv

$N(v)dv = \frac{\partial x}{\partial s} \frac{4\pi v^2}{c^3} dv$

$$
=\frac{8\pi\nu^{2}}{2^{3}}dv
$$

Energy per mode is KT $\epsilon(\nu)$ dv = $\frac{8\pi v^2 kT}{c^3}$ dv

$\epsilon(\lambda)$ dx = $\frac{8\pi kT}{\lambda^4}$ dx

Max Planck's Theory

Due to failure of R-J, he assumed mat oscillators can only titting factor

merefore, energy is quantised conditiones of his

Number of oscillators with energy nm

Energy of No oscillators

 $E \cdot N_0$ nh ν

Total mergy
 $\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \frac{N_0}{n} n h \nu$

Average energy

 $u t d = h y$

Noiting in differential from $\langle \epsilon \rangle$ = - ktd d $\left(ln \left(\sum_{n=0}^{\infty} e^{-n \alpha} \right) \right)$

 $\sum_{n=0}^{\infty} e^{-nx} = 1 + e^{-x} + e^{-2x} + ...$

 $\sum_{n=0}^{\infty} e^{-nx} = (1-e^{-\alpha})^{-1}$

<E) = akT d ln $(1-e^{-x})^{-1}$

 $=$ akid en $(1-e^{-d})$ -aki $\left(\frac{e^{-d}}{1-e^{-d}}\right)$

= $h\nu$ $\left(\frac{1}{e^{\alpha}-1}\right)$ = $\frac{h\nu}{e^{h\nu}/u-1}$

Substituting in Max Plaudi's Law

$U(V)dv = \frac{8\pi v^2}{c^3}$ du $\frac{hv}{hp/hJ}$

 $=$ $8nv^3$ av kT - Rayleigh-Jeans Law

33

. at low frequencies, reduces to Rayleigh-Jeans Law

Planck's Law of blackbody radiation proves that radiation

Compton Effect

-
- Compton Scattering
Experiment that Supported particle behaviour of EM
radiation \bullet

Law of conservation of energy

Total energy before collicion = total energy after collision

$$
E+m_0C^2=E^{\prime}+E_e
$$

$$
E_{\mathcal{E}} = \begin{cases} m_{0}^{2}c^{4} + p_{\mathcal{E}}^{2}c^{2} & \text{= Ensten's Theory} \\ \text{Crelativistic energy} \\ \text{of moving parity} \\ m_{\mathcal{E}} & \text{rest mass} \end{cases}
$$

Law of conservation of momentum

2-component of momentum

$$
p+0 = p' \cos\theta + p_e \cos\phi
$$

$$
p-p' \omega_0B = p_e \omega_s\phi \quad (2)
$$

y-component of momentum

$$
0 = p'sin\theta - p_e \sin\phi
$$

$$
P'sin\theta = p_e sin\phi
$$
 (3)

Squaring and adding (2) and (3)
\n
$$
(p-p'cos\theta)^2+(p'sin\theta)^2-(p_{c}cos\theta)^2+(p_{e}sin\phi)^2
$$

\n $p^2-2pp'cos2\theta+p^2=pe^2$

$$
\rho e^2 = p^2 + p'^2 - 2pp' \cos \theta \qquad (4)
$$

Using equation (1)
\n
$$
E-E^3 + M_0 c^2 = E_e
$$
\n
$$
E - E^1 + M_0 c^2 = \sqrt{m_0^2 c^4 + p_e^2 c^2}
$$
\n
$$
(p - p^2 c) + m_0 c^2 = \sqrt{m_0^2 c^4 + p_e^2 c^2}
$$
\n
$$
q_0 - p^2 c^2 + m_0^2 c^4 + \lambda (p_0 - p^2 c)(m_0 c^2) = m_0^2 c^4 + p_e^2 c^2
$$
\n
$$
p^2 e^2 + p^2 c^2 - \lambda p p^2 c^2 + \lambda c^2 (p - p^2) m_0 = p_e^2 e^2
$$
\nSubstituting $p^2 + p^2$ from (4)
\n
$$
p^2 + p^2 - \lambda p p^2 + \lambda (p - p^2) m_0 c = p_e^2
$$
\n
$$
p_e^2 + \lambda p p^2 \omega_0 \theta - \lambda p p^2 + \lambda (p - p^2) M_0 c = p_e^2
$$
\n
$$
\frac{\lambda p^2}{\lambda p^2} (w_0 \theta - 1) = \lambda (p^2 - p^2) m_0 c
$$
\n
$$
\frac{\lambda p^2}{\lambda_1 \lambda_2} (w_0 \theta - 1) = \lambda (\frac{\lambda_1}{\lambda_2} - \frac{\lambda_2}{\lambda_1}) m_0 c
$$

$$
2h \quad \text{Ccos} \theta - 1) = 2(\lambda_i - \lambda_s) m_0 c
$$

 $\lambda_{S}-\lambda_{L} = \frac{h(C1-cos\theta)}{m_{0}c}$ (compton $\Delta\lambda - \lambda_s - \lambda_i$

 $\Delta \lambda$ Compton Shift h Compton wavelength = 2.427×10⁻¹² m = λ_c $m_b c$

X-rays from Mo target CN=0.074nm)

 $\mathbf{0} = \mathbf{0}$ $\Delta\lambda > 0$ photon not interacting with e-

- (ii) θ 45° $D^2 = 0.71$ pm
- (iii) θ -90° $\Delta\lambda = \lambda_c = \lambda.421$ pm
- (iv) θ = 180° Da = 20, = 4.854 pm
photons undergo backscattering
e- gains maximum energy

conclusion

- Compton shift does not depend on the incident
- . Depends only on the scattering angle Θ

de - Broglie Hypothesis

- Dual nature of matter
- Argued that if radiation shows dual nature, matter should too
- Every object in motion is associated with ^a wave, called matter waves

$$
\lambda = \frac{h}{p}
$$

- cannot be observed for macroscopic objects as the momentum is large and the associated X is extremely small
• Only in atomic/subatomic scale
-
- Won Nobel prize in ¹⁹²⁴
- · Proven first by Davison-Germer experiment
- · Used Ni crystal, e-was accelerated at different potentials
- ^x for a free particle

free particle
\n
$$
E_k = \frac{p^2}{am} \Rightarrow p = \sqrt{am} E_k
$$

$$
\lambda = \frac{h}{\sqrt{amE_{\mu}}}
$$

· For an accelerated charged particle

Davisson-Germer Experiment

It was noticed that at V -54V and ϕ =50°, intensity was maximum

40

- Interplanar distance known d - - $\frac{a}{\sqrt{a^2+a^2}}$
- Using X-rays, they found lattice plaines, miller indices found and int erplanar space found to be $d = 0.91$ Å

-

- Diffraction angle =65° CBcagg's diffraction)
- · Use these values to calculate $\lambda \Rightarrow \lambda = 1.65$ A
- de Broglie x for accelerated charged particle

values to calculate
\n
$$
\lambda
$$
 for accelerated
\n $\lambda = h$ = 1.61 Å
\n $\lambda = h$ = 1.61 Å

Or. Find the KE and v of proton of mass 1.67 x 10⁻²⁷ kg
associated with deBroglie wavelength of 0.2865 Å

42

$$
\lambda = \frac{h}{p} = \frac{h}{mv}
$$

$$
\nu = \frac{h}{mv} = 13848 \text{ ms}^{-1}
$$

 \mathbf{m} $\mathbf{\lambda}$

$$
KE = \frac{1}{2}mv^2 = 1eV
$$

^O: the shift in the t of x-rays scattered in a Compton experiment is 0.2 pm $\lambda_5 = 1$ op 2 nm. Find θ at which x-ray photon is scattered and what is the momentum gained by the e-?

$$
6\lambda = 0.2 = \lambda_{s} - \lambda_{i}
$$
\n
$$
\lambda_{i} = 1.0018
$$
\n
$$
4\lambda = \frac{1}{m_{c}} (1 - 4900)
$$
\n
$$
4000 = 0.917
$$
\n
$$
0 = 23.42
$$

energy transferred = $\frac{hc}{\lambda}$ - $\frac{hc}{\lambda}$ $\lambda_{\tilde{\mathbf{i}}}$

43 $\frac{1}{2}$ $\frac{p^2}{m}$ $\frac{3\pi}{4}$ $\left(\frac{\Delta\lambda}{\Delta\lambda_5}\right)$ homenoric $p^2 =$ amhc $\Delta \lambda = 2.685 \times 10^{-25}$ kg ms⁻¹ PMS: 6.6 x 10⁻²⁵ kg ms⁻¹

a. Compare the momentum and energy of e-
and photon whose λ_b = 650 nm

electron: photon: $p = E = k$ $P = R$ $E = hc$ $E = p^2$
 $\frac{1}{2m}$ Pe = 1.019 x 10-27 kgms $p_e = 1.019 \times 10^{-27}$ kg ms⁻¹ E_e = 3-565 ×10⁻⁶ eV $C_{p} = 1.91 eV$ $\frac{E_{e}}{E_{P}}$ = 1.867 x 10⁻⁶

Q: What is a of H atom moving with the mean 5
corresponding to the any kEU of H atoms under
thumble ep at 293 K Cmass of H = 1.008 amu)

44

 $\angle 17 = 4a^2 (\frac{1}{2}) cos^2(\frac{0}{2})$

 $I \propto \cos^2 \Phi$

Single Particle Double slit Experiment

A single particle (photon, electron) can only go to one spot at a time .

when one slit is open, we observe a normal distribution
I. & 12. $1, 2.12.$

when both are opened, we expect to observe Ires = I, + Iz as in the case of bullets. However, we notice an interference pattern . But this does not make sense as individual particles were sent one at ^a time (not light waves)

 S_1 open S_2 open S_1 S_2 open

45

,

interference tringes wave nature

If detectors are placed, $\vec{\epsilon}$ disturbs wave nature of e- and

Mach Zehnder Experiment Cinferometer) ⁴⁷

similar to single photon interference, a laseris shone as shown above.

Beam splitter

splits beam into 50% intensity reflection, 50% intensity transmission.

when light is sent, all light reaches detector B and no light relates detector A.

This is because the two paths to B result in constructive interference Cin phase) , while the two paths to ^A result in destructive interference C phase diff $= \pi$)

Paths to B: trans \rightarrow refl \rightarrow refl and refl $-$ refl $-$ trans (0) (n) (n) (n) (n) (n) (n)

Paths to A: trans \rightarrow refl \rightarrow trans and refl-refl

(0) (0) (0) (0) (1) ω) $\vert \bar{v} \vert$ \ln

Even when performed with single particles, loop of the particles go to B and 0% to A.

48

However, when detectors D, and Dz are placed, 50% of the intensity is at A and 50 / A at B .

John Wheeler 's Delayed choice Experiment

Send ^a short pulse of light Cfemtosecond) with many photons travelling towards the screen .

nuvening turning the screen.
Two detectors T, and T₂ are placed behind the screen and are focused on each sixt.

The screen can be made translucent in ^afraction of a second by applying E?

When experiment performed, we observe interference as usual when me screen is present.

This must mean that the photons were directed in such a way as to form the interference pattern.

If the screen is removed and the detectors are exposed, the interference pattern does not form, instead, a continuous
distribution of light is observed, which means photons
were travelling like this.

How did the photons change their momentum to travel in all places instead of those certain area?

wavefunction ly - psi)

de Broglie assumed that all matter has associated with it awave, known as amatter wave ^Chypothetical)

this model accurately predicted experimental observations like interference, diffraction etc.

Waves signify variation of a certain parameter CE , pressure, water height)
EM waves ---Ee ^B -Ela,

t) reight)

M waves $\begin{array}{rcl} & \text{E & \text{E} & \text{E} & \text{E} & \text{E}(2, t) \ & \text{Shrings} & \text{displacement} & \text{y}(2, t) & \text{Sunk} & \text{E}(3, t) \end{array}$

In matter waves, what is varying?

Max Born assumed that all particles have associated with them a wavefunction with an associated wavelength.

$$
\Psi = A \sin \left(\frac{2\pi}{\lambda} x\right)
$$

The wavefunction ψ has no physical meaning; it is only a mathematical representation.

the wavefunction is defined as

$$
\psi(a_{1}t) = A \sin(\omega t - \kappa x)
$$

we assume a complex wavefunction for simplicity

 $\psi(c_1,t) = Ae^{i(\omega t - \omega t)}$ $\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix}$ purely mathematical

For interference,

 $\overline{\mathsf{S}}$

- . We associate Ψ_1 , Ψ_2 as wavefunctions for each slit Choticous wave)
- Now, we notice that the intensity observed on the screen
perfectly matches 14, +421, and not 4, +42.
- . We imagine each particle sends 2 mothematical curves
- · Fringe width $\beta = \frac{\lambda D}{d} = \frac{hD}{\rho d}$, depends on λ
- \cdot ψ is purely mathematical Cromplex)

 $|\psi|^2$ is real (probability density)

. et knows its surroundings and only goes to areas where

- \cdot $\|\psi\|^2$ = $\psi^* \psi$, where ψ^* is complex conjugate
- · eg: 4= Aeikx, 4 $*$ = Ae^{-ikx}
- | 4|^{2 =} 4^{*}4, wher
eg: 4 = Ae^{ikx}, 4
|4|² = A² $|\psi|^2 = A^2$ observable

Probability density 141²

- Probability of finding the particle at a particular place
when the space \longrightarrow o
- . To find the probability of finding the particle in a finite place : $P = |\psi|^2 \Delta x$ or $|\psi|^2 \Delta R$ or $|\psi|^2 \Delta V$
- ¹⁴¹² becomes probability only when multiplied by some dimension.

$$
d\rho = |\psi|^2 dz
$$

. The probability that the particle lies in the region
assisted at any given time is given by

$$
P_{assob} = {6 \over 4 |\psi|^2} dx
$$

a
K

This is called normalisation

• μr " is the probability per writ area volume / distance

 53

- $(4)^2$ can be greater than 1 as it is density
- · But $R = |\psi|^2 dx < 1$ as $|\psi|^2 dx$ gives probability itself .

Conditions on ψ

- l . ⁴ must be continuous everywhere (probability must be defined everywhere)
- ² ⁴ must be single-valued (single probability per point)
- 3. ψ must be finite and as $x \to \infty$, $\psi \to 0$ (due to normalisation $\int_{0}^{1} \int_{0}^{a} |\psi|^{2} dxdydz = 1$ and ψ cannot be infinite)
- $\frac{\partial \Psi}{\partial x}$, $\frac{\partial \Psi}{\partial y}$, $\frac{\partial \Psi}{\partial z}$ and $\frac{\partial \Psi}{\partial t}$ must be continuous everywhere
- 5- 4 must be a solution to Schrodinger's Equation

 $6\,$ \uppsi must be normalisable

- \cdot In EM waves, $A^2 = 1$
- · In matter waves, A² gives probability density (probability of finding the particle) In EM waves, A2 = 1

In matter waves A2 gives probability devily (probability

of finding the partners of the contract contract of the contract of the contrac

of

consider a sine wave

Amplitude same from - a to a

To represent matter wave, we look for wave with varying amplitude

we superimpose many sine waves of slightly different frequencies and get wave paleets

only ^a mathematical representation; not real

when many waves of slightly different frequencies are superimposed, the resultant is a wave pallet / envelop

construction of wave Packet

superimpose waves with slightly different wavelengths .

For simplicity, we consider ² waves and add) superimpose them

Phase & Group velocities

for any wave y (x_it)= A sim(wt-kx)

$$
\frac{v_{phase} - w}{k} = \frac{2\pi f}{2\pi} - f_d
$$

phase velocity of the wave (how fast phase varies)

consider two waves of slightly different frequencies

Thus, we have the
\n
$$
\frac{1}{2}
$$
th time where
\n $y_1 = A \sin(\omega t - k\alpha)$

$$
y_1 = A
$$
Im(wt - kx) — (1)
 $y_2 = A$ im ((w + 0w) + -(k + 0k) x) — (2)

Superimposing (1) and 12)

$$
y = A \sin(\omega t - \mu x) + A \sin(\omega t - \mu x)
$$

$$
y = \lambda A \sin \left(\omega t - kx + \frac{\Delta \omega t - \Delta kx}{2}\right) \cos \left(\frac{\Delta \omega t - \Delta kx}{2}\right)
$$

y $=$ 2A sin $((\omega + \Delta u))$ $t - (k + \frac{\Delta k}{2})^2)$ $\omega_1(\frac{\Delta \omega_1 t - \Delta k}{2})$

$$
y_{1} = A sin(\omega t - kx) \qquad (1)
$$
\n
$$
y_{2} = A sin((\omega + \Delta\omega)t - (k+\Delta k)x) \qquad (2)
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$
\n
$$
4px + \Delta kx = 1
$$

where
$$
w' = w + \frac{\Delta w}{2}
$$

 $k' = k + \frac{\Delta k}{2}$

amplique

55

Amplitude varies with time Camplitude modulation)

There are two velocities in the wave.

Thase velocity

- actual velocity of the wave Chow fast one phase moves)
 $\omega' \approx \omega \longrightarrow$ high frequency component
- $\frac{\omega'}{k} \approx \frac{\omega}{k}$
- · gives us momentum

Group velocity

-
- · velocity of the wave packet/envelope/group
· <u>Dw</u> low frequency component **DV**
- · gives us position

If Uphase = Ugroup, wave Looks stationary; only norizontal

 $Vgrowp = 2k-20$ $\frac{\Delta \omega}{\Delta k}$ = $\frac{dw}{dx}$

Show that particle velocity = group velocity

$$
V_{\text{group}} = \frac{dw}{dw} \qquad \qquad \omega = a\pi f = \frac{2\pi E}{h}
$$

$$
\frac{1}{\lambda} \cdot \text{Vgroup} = \frac{dE}{dp} \qquad h = \frac{d\pi}{\lambda} = \frac{d\pi p}{h}
$$

$$
\frac{E = p^2}{2m} \Rightarrow \frac{dE}{dp} = \frac{2p}{2m} = \frac{p}{m} = V_{\text{particle}}
$$

In a dispersive medium, Vprax = Vgroup

Relationship Between v_{phase} and vgroup

$$
v_{phase} = \frac{\omega}{\kappa}
$$
 $v_{group} = \frac{dw}{dw}$

$$
w = k v_{pnace}
$$

$$
\frac{dw}{dt} = v_{pnace} + k \frac{dv_{pnace}}{dk}
$$

Vgroup = Vphase + 211 d'vphase di

 $\frac{kz\lambda\pi}{\lambda}$ => $dkz - \frac{\lambda\pi}{\lambda^2} dx$

Vgroup = Vphase + $\frac{\partial \pi}{\partial} \left(\frac{-\delta^{22}}{4\pi} \right) \frac{d\theta_{phase}}{d\lambda}$

Vgroup = Vphase =
$$
\frac{\lambda dV_{phase}}{d\lambda}
$$

& Evaluate the condition under which

1)
$$
V_{q\delta}oup = \frac{1}{2} V_{phase}
$$
 2) $V_{group} = 2 V_{phase}$

$$
V_9 - V_P = -\lambda \frac{dV_{phase}}{d\lambda} \qquad V_9 - V_P = -\lambda \frac{dV_P}{d\lambda}
$$

\n
$$
\frac{1}{2}V_P = \lambda \frac{dV_P}{d\lambda}
$$

\n
$$
\int \frac{1}{2} \frac{d\lambda}{\lambda} = \int \frac{dV_P}{V_P} \qquad \int \frac{d\lambda}{\lambda} = \int \frac{dV_P}{V_P}
$$

\n
$$
\frac{1}{2}M\lambda = MV_P + C \qquad -M\lambda = MV_P + C
$$

$$
v_p \propto \lambda^{1/2} \qquad \qquad v_p \propto \qquad
$$

58

 θ : Phase velocity of ripples on a tiquid surface is $\sqrt{\frac{2\pi s}{\Delta \rho}}$ where

where g= acc due to gravity

$$
V_{\theta} = V_{\rho} - \lambda \sqrt{\frac{a}{\alpha \pi}} \left(\frac{1}{2} \frac{1}{10} \right) = V_{\rho} - \frac{1}{2} V_{\rho}
$$

$$
V_0 = \frac{1}{2} V_P
$$

HEISENBERG'S UNCERTAINTY PRINCIPLE

According to deBroglie, $\lambda \approx \frac{h}{mv}$ where λ represents a wave

Let ψ = Ae ikx which is a wavefunction of a particle and we get 141= n2

 \blacklozenge

- We know λ exactly \Rightarrow p is exactly known
- ¹⁴¹² → probability density is constant everywhere , which were where. probability of finding the particle is constant . therefore, ^I the position of particle is ununown.
- To find position , we apply fourier transforms.
- . We saw by adding two waves, we got packets, but those packets wote everywhere.

we get localised packets Cpackets only in one position)

 $\boldsymbol{\chi}_{\boldsymbol{\delta}}$

. We know the position of the particle fairly accurately.
but since we added so many waves of different λ ,

 62

· Fourier transform gives localised peak called as Dirac-Delta function

$$
\begin{array}{c|c}\n\cdot & \text{if } \Delta x = 0, & \Delta p = \infty \\
\Delta p = 0, & \Delta x = \infty\n\end{array}
$$

FOURIER INTELLERL

. more on it later

$$
\Psi(x) = \int_{0}^{\infty} g(u) \omega u \nu u \, du \longrightarrow
$$
 fourive integral
\n
$$
\int_{0}^{\infty} g(u) \omega u \nu u \, du \longrightarrow
$$

It we take various fourier integral waveforms

 \mathcal{L}

the productof Dx and Dk is minimum for Gaussian wavepackets.

standard deviation of An and Dk , as functions of $\psi(x)$ and $g(x)$, we get $\Delta x \Delta k = \frac{1}{2}$

Generally, wavepackets are not of Gaussian type

$$
\Delta x \Delta k \geq \frac{1}{2}
$$

$$
k = \frac{2n}{k}p \Rightarrow \Delta k = \frac{2n}{k} \Delta p
$$

$$
\Delta x \Delta p \geq \frac{k}{4\pi} = \frac{K}{2}
$$

other Uncertainty relations

$$
ODDD_{\frac{h}{4\pi}}
$$
 (angulac)

 $\overline{\text{DE}}$ Ot \geq $\overline{\text{A}}$ (energy) 41

statement: It is impossible to measure momentum and position simultaneous with unlimited precision.

Illustration of uncertainty principle

Gamma Ray microscope

• A thought experiment

• Limit to which position of e^- can be measured is resolving power

$$
\Delta z = \frac{\lambda}{2sin\theta} \qquad (1)
$$

• using Compton scattering, find Dp

Extreme cases

1) If photon enters eyepiece through OP (pmn)

65

• Momentum in x-direction 66

$$
\frac{h}{\lambda} + 0 = \frac{h}{\lambda'} \sin \theta + \rho_{min}
$$

a) If scattered photon enters through OQ lpmax)

$$
\frac{h}{\lambda} + 0 = \frac{h}{\lambda'}
$$
 (05(40+0) + p_{max}

Uncertainty in momentum

Momentum can actually lie between pmin and pmnc

$$
p_{max} - p_{min} = \frac{h}{N} \sin \theta + \frac{h}{N} \sin \theta = h \sin \theta (\frac{\lambda' + \lambda''}{N \lambda''})
$$

$$
\Delta p = \frac{2h}{\lambda} \sin \theta
$$

From $\left(1\right)$ and $\left(2\right)$

$$
\Delta x \Delta p = \frac{\chi}{2sin\theta} \cdot \frac{\chi_{h}sin\theta}{\Delta} = h
$$

$$
\Delta x \Delta p = h
$$

Note: h/4n comes from a different derivation involving standard deviation and fourier transforms.

Important: Here, we see $\mathbf{b}x$ is $\mathbf{a}p$ are limitations due to our measurement, but in reality these uncertainties are inherent to the particle itself.

Nonexistence of e- Inside of Nucleus

- Let us assume e exists inside nucleus
- If the e- is part of the nucleus, then the position of the e⁻ is uncertain to the extent of the nuclear diameter.

$$
\Delta x = |D| = 10^{-14} m
$$

• According to HUP , $\Delta z \Delta p \ge \frac{L}{4\pi}$

$$
\therefore
$$
 $\Delta p \approx 5.27 \times 10^{-24}$ kg m s¹

- . We know from B-decay studies that the energy of the e is about $3-4$ MeV.
- We make an assumption that the momentum is of the order of the error
- . The minimum nomentum of the e-has to be the uncertainty Dp
- · merefore, p = 0p
- $\frac{1}{2}$ $\approx \frac{(\Delta p)^2}{4m}$ = 95.48 MeV
- · The order of the energy of the e- we get is out of range of the energy of e-
- · merefore, the e-cannot exist inside the nucleus